
Chrome:
Concrete Architecture

Bits… Please!



2

Agenda:
1. Derivation 

2. Alternatives

3. Concrete Architecture

4. New Subsystems / 
Dependencies

5. Subsystem: Render

6. Use Case

7. Current Limitations/ 
Lessons Learned



Conceptual Architecture

3

Layered

Legend

Subsystem

Dependency



Derivation Process

4

● Use code analysis tool called Understand

● Create a new architecture with the components of 

conceptual architecture 

● Addition of Utilities and Communication component 

● Map source code to the correct subsystem based on 

functionality



Alternatives 

5

Legend

Subsystem

New Dependency

Old Dependency



Concrete Architecture

6

Legend

Subsystem

New Dependency

Old Dependency

Object-Oriented



New Subsystems and Dependencies

7

Communication
● Encapsulates Mojo and threading
● Allows all aspects of the architecture to communicate via 

message passing and IPCs

Utilities
● Contains the “Base” code which is the shared code between all 

modules
● Contains string manipulation and general utilities
● Contains specific code for each operating system



Render -> Memory
● The Render uses a security filter
● Displays a message to the user that is stored in memory
● Example: “phishing” or “malware” detection



Render -> UI
● Renderer extension uses the UI layout

Render -> Browser
● The Render allows safe browsing based on the type of browser and 

message passing

Render -> Network
● Is the network connection is up and running?



UI -> Memory
● Makes window resizing appear smooth

UI -> Network
● The UI connects to the network to fetch the URL and format to 

display it

UI -> Render
● Play cc animations



Memory -> UI
● Memory stores previously accessed URLs
● As typing begins in the UI, Memory can display what the 

possible URL may be



Memory -> Browser
● Saves the snapshot file of each process in memory and 

can return it to the browser if necessary

Network -> Memory
● From network, IO Buffer streamed to memory for optimal read 

operations of data

Network -> Browser
● Handles some of the testing testing and determining network 

crashes



Network -> Render
● Renderer has a Network Interface List that the Network 

must be able to access

Browser -> UI
● If there is a conflict/error in the Browser, it communicates with UI to 

display an error message to the user



Subsystem: Render

14



Use Case 1

15



Current Limitations and 
Lessons Learned

Current Limitations
● Lack of commenting and code readability
● This lead to difficulties in tracing the dependencies between 

subsystems
● Lacking JavaScript V8 and Plugins source code

Lessons Learned
● Communication
● Set deadlines
● How to use Understand

16



Team Issues within Chrome

● Independent teams working on different 
subsystems made it challenging to track who 
worked on what subsystem when 

● Code updating with high coupling

17



Feature - Facial Authentication

18

Problem
● Users have many passwords associated with 

numerous websites
● Difficult to remember all passwords

Solution:
● Add your face authentication to Chrome
● Passwords are saved to the user account
● Use facial authentication to use saved passwords 



Conclusion

19

● Object-Oriented concrete architecture
● Added dependencies 
● Utilities and Communication subsystems added



20

Thanks!
Any questions?


