

CISC 322

Assignment 3: Report
Google Chrome Feature: Face First

Friday, November 30, 2018

Group: Bits...Please!

Emma Ritcey 15er21@queensu.ca
Kate MacDonald 14km90@queensu.ca

Brent Lommen brent.lommen@queensu.ca
Bronwyn Gemmill 14bvg1@queensu.ca

Chantal Montgomery 15clm1@queensu.ca
Samantha Katz 12sk93@queensu.ca

mailto:12sk93@queensu.ca

Abstract
Our team developed a new feature for Google Chrome called Face First. This feature

allows password and user profile protection using facial recognition for user validation. We
began our design process by establishing two approaches to implement our feature. We
performed a SAAM analysis on both approaches which identified the Stakeholders and the
advantages and disadvantages of each approach. Our final approach impacted the UI,
Browser, and Memory subsystems in our conceptual architecture. Our team investigated both
the high level and low level systems the feature would impact in the Chrome system. We
determined the non-functional requirements that our feature would satisfy while also
identifying the potential risks to the system as a result of our new feature. We identified
various test cases to insure our implementation is sound within the Chrome system.

Table of Contents

Abstract 2

Table of Contents 3

Introduction to Face First 4

Current State 5

Approach #1 5

Approach #2 6

SAAM Analysis 7

Effect on Conceptual Architecture 9

Potential Risks 10

Testing Implementation 10

Interactions with Other Features 11

Architecture Style and Design Patterns 11

Sequence Diagram 11

Conclusion 12

References 12

Introduction to Face First
Have you ever tried logging into a website but you couldn't remember your password?

If you answered yes, you’re not alone! In 2017 it was discovered that the average email
address in the U.S. is connected to 130 accounts with 25% forgetting a password a day. With
each website having different specifications and requirements regarding character count,
numbers, capitalization, etc it can be difficult for users to remember their password for each
account. Although Google Chrome currently has a password manager that stores passwords,
our team wanted to create a more secure and personalized solution for user information. This
feature is called Face First!

When opening a Chrome browser all of the user’s information is unlocked. If another
person were to open this browser they could see the user’s browser history, bookmarks, and
have access to their passwords. Chrome currently asks the user if they want to store their
password so it can be automatically re-entered when logging into that account. However,
when that password is automatically re-entered Chrome does not verify that they are
unlocking this private information for the correct user. Face First would add an extra level of
security and a more private browsing experience.

Face First will allow Chrome users to unlock all of their personal information with
their face. By utilizing the webcam built into the current device, this feature will perform
facial analysis to authenticate the user. Once the user is identified, all of their personal
settings and information will be visible. Personal settings include, browser history,
passwords, and bookmarks. If the user was rejected, the Chrome browser would still be
functional but no personal information would be accessible.

Our team previously analyzed Google Chrome to propose a conceptual and concrete
architecture. Using the information we discovered while deriving those architectures, we
investigate how our feature could be implemented into these pre-existing systems. We also
utilize the Software Architecture Analysis Method (SAAM) to determine the most effective
way to implement our feature. This analysis will allow us to access how our implementation
will affect quality attributes such as performance and modifiability with respect to
stakeholders. Our derivation process and logic with regards to effectively and efficiently
implementing Face First will be further discussed in the report.

Figure 1. View when Chrome is opened.

Current State
After the Face First feature was proposed, it needed to be integrated into the current

conceptual architecture. It was determined that the subsystems affected would be UI,
Memory, and Browser. After discussion and performing the SAAM analysis (below) the
proposed subsystems within our subsystems were developed and implemented into our
conceptual architecture. In Figure 2 below, the current state of the conceptual architecture
with the Face First features can be seen.

Figure 2. Current state of the conceptual architecture with Face First implemented.

Approach #1
The first approach to implementing the Face First feature was to have the user

validation apply to the whole window. The user is validated through facial recognition in the
Browser subsystem which then automatically logs the user into their account. Because it
applies to the entire window, when the user opens a new tab in that window, they are
automatically logged into their account on that tab as well. However, if the user opens a new
window while currently logged into another window, they must use facial recognition to

access their account in that window. When the user closes the browser, they are
automatically logged out of their account on that window.

The main advantage of this approach is maintainability. Since only three subsystems
are affected when implementing this feature, the feature itself has low coupling when
implemented in this way into our architecture. Decreasing the number of dependencies
allows for easier implementation and code updating. The advantage of validating the user
across the entire window allows for higher performance, as facial recognition is not needed
for each tab that is opened. However, this results in decreased security, so our team had to
determine whether performance or security was the most important characteristic of Face
First before deciding on the final implementation.

Figure 3. Approach #1 implementation of Face First in affected subsystems of the conceptual architecture

Approach #2

Our second approach for a possible implementation of the Face First feature for
Chrome involves the feature being constructed as a plugin. In the second approach, the user is
required to use Face First to log in to their Chrome account each time a new tab is opened, in
addition to a new browser being opened. Chrome users are then automatically logged out of
their Chrome account, each time a tab is closed.

The advantages of this implementation of the feature are primarily centered around
security. By enforcing a new login with each new tab that is opened, the browser and the
Face First feature do not assume that the same user is still using the browser, perhaps it may
be a different user opening a new tab. Thus, increasing the security of the user’s information.
The tradeoff of this increased security for the feature is that it slows down the feature process.
By forcing the user to login with each new tab, it adds time to the feature and the user. As
well, as can be seen in the proposed architecture diagram, this implementation requires more
subsystems to be involved. The involvement of more subsystems results in increased
coupling in the architecture, which is not ideal. But, due to the increased security, our team
explored the possibility of this implementation before deciding on a final implementation that

is still secure, but does not result in as many dependencies and will operate at an appropriate
speed.

Figure 4. Conceptual architecture of Face First feature implementation approach number two.

SAAM Analysis

NFR Effect (Approach #1) Effect (Approach #2)

Security Moderate. The authentication applies to
the whole window, which means it is
assumed that it is the same user opening
new tabs within a window. If the
highest level of security possible was
the goal, this would approach would not
be adequate.

High. By enforcing subsequent logins by
the user, each time a new tab process is
started, this approach is more secure. It
does not assume that the same user will
be opening a new tab in the same
window.

Performance High. The user does not need to
authenticate their identity each time a
new tab is opened. They only need to
use facial recognition when a new tab is
opened, which results in higher
performance.

Low. Increased logins by the user each
time a new tab is opened add time and
negatively impact performance. Making
this approach slower than the first
approach.

Maintainability High. This approach is implemented
into three subsystems, which
automatically increases the number of
dependencies between and within the
subsystems. However, relative to
approach 2, this does not affect as many
subsystems and therefore has higher

Low. This approach requires more
subsystems to be involved in the feature’s
process, therefore increases the coupling
on the system.

maintainability as there is less coupling
added to the system.

Table 1. Effects of NFRs on each of approach to implementation.

Stakeholder NFR Investment in Project (Approach
#1)

NFR Investment in Project (Approach
#2)

Users This approach assumes users are
concerned with having adequate security
of their personal information while still
maintaining the high performance of
Chrome. They will be unlikely to use
Face First if it negatively affects the
speed at which they browse.

This approach assumes that users are
more concerned with having high
security of their personal information
and having adequate performance of
Chrome. They will be unlikely to use
Face First if it does not have high
security for their personal information.

Developers Developers are most concerned with
increasing the maintainability of the
feature so that they can easily fix and
enhance it in the future. At the same
time they still want to maximize security
and performance so that Google is
satisfied with the product.

Developers will be concerned with the
maintainability of the feature. They will
want to minimize coupling and increase
cohesion in order to create good
software for the user to enjoy.
As well, developers will be concerned
with the security as they want the feature
to be as secure as possible for users.

Investors Investors would likely be highly
concerned with security as they wouldn’t
want to be investing in something that
will end up leaking users personal
information. They would also be
concerned with performance since they
know people will not use the feature if it
negatively impacts the speed of their
browser.

Investors will be concerned with the
security mostly, as they want users to
feel safe using the feature, as well as for
the feature to be secure to avoid possible
issues that may arise if the feature is not
secure.

Google Google would be concerned with
everything that their investors,
developers, and users are concerned
with, as this feature would not be
possible without them. They want a
feature that is easily maintained by their
developers, but that also has high
security and performance for its users
and investors.

Google’s primary concern is to create a
successful feature for users, that is easily
maintained by developers and meets the
requirements of stakeholders. Thus, they
will want the feature to be secure, and
not impact the total architecture of the
system. It must be maintainable in order
to minimize coupling and increase
cohesion.

Table 2. Effects of the project and NFRs that Stakeholders will have investments in.

After performing the SAAM analysis, we needed to decide whether high security or high
performance was our main priority in implementing this feature, as these were the main
differences between our two approaches from the users’ perspective. Ultimately, we decided
that Approach #1 was our best option as we believe users would not want to have to
authenticate themselves each time they opened a new tab, even if it is more secure. By
choosing the first approach, we also help the developers as this is a much easier feature to
maintain once it is implemented. This will make code updating and enhancing much easier in
the future.

Effect on Conceptual Architecture
Our feature will impact 4 components from our conceptual architecture: User

interface, browser, memory and plugins.

User Interface

The user interface displays a request to the user to login to their account through
facial recognition. If the user selects yes the UI will request access to the systems camera,
then forward the request to the browser component to facilitate the authentication. In
accordance to our original architecture the UI continues to only depend on the browser
component.

The expected impacted files and folders for the user interface are: ui/display/manager,
ui/login, ui/messae_center

Browser

Once the browser receives the Face First authentication request from the UI it will
access the systems camera to capture an image of the user. The browser must then retrieve the
original image of the user for comparison. The browser accomplishes this by sending a
request to the memory component. Once the browser receives the original and captured
images, they will be passed to the plugin component for validation. The browser’s component
dependencies remain unchanged from our original architecture, however the browser now has
access to the systems camera resource.

The expected impacted files and folders for the browser are:
memory_coordinator_impl.h, image_capture_impl.h, content/browser/permissions,
components/password_manager/core/browser

Memory

The memory component will handle the request from the browser and return the users
original Face First ID. All user specific memory such as bookmarks, search history and
passwords are restricted until the user is authenticated. The memory component dependencies
remain unchanged from our original architecture.

The expected impacted files and folders for memory are: content/child/memory,

child_memory_coordinator_impl.h, child_memory_coordinator_impl_android.h

Plugin

The plugin component will receive the original and captured images from the browser
to perform the validation of the user.

The expected impacted files for the plugin component are: about_signin_internals.h,
account_fetcher_service.h, account_info_fetcher.h, child_account_fetcher.h.

Potential Risks
The implementation of our feature Face First comes with potential security risks.

Giving the browser access to the systems camera resource opens up the browser to the
possibility of being accessed without the user’s permission. During development it is
important to keep this in mind and create a sufficient test suite to insure unauthorized access
is not permitted. A second security risk of our enhancement is the facial analysis function for
authorizing user’s. It is necessary that the quality of the facial analysis is sufficient enough to
only authorize the user of the account. Developers will need to ensure that the facial analysis
can not be tricked into giving access to the wrong user.

Testing Implementation
To determine if our feature has been implemented correctly its effect on Google

Chrome and the functionality of the feature need to be tested. First, it is important to test that
the feature is functional on the different operating systems Chrome is available on. For
example, the feature should work on Linux, Mac and Windows operating systems. As well, it
should be accessible through mobile devices like, Android and iOS. It is also important that
the feature is adjustable based on the size of the page. If the page is scaled down or up the
feat should adjust.

Second, the existing password manager should not be comprised. Previously saved
password should be accessible but still secure. This can be tested by comparing the list of
password before and after implementation.

Third, the browser speed should not be compromised. It is important to ensure that the
user’s browsing experience with Chrome is as efficient and easy before the feature was
implemented. This will be tested by comparing the speed of the browser before and after the
feature is included.

Lastly, the actual functionality of Face First will be tested. Test cases will be created
based on our specifications to ensure all needs are met. It is also important that the Face First
feature works for all types of users and can differentiate between users. As well, the feature
should be able to recognize users wearing accessories like, hats and glasses.

Interactions with Other Features
Our Face First feature added to Google Chrome will interact with other features that

have already been implemented in the system. The Face First system utilizes the Plugin
subsystem to communicate with a facial recognition verification feature. This feature takes
the information regarding the user’s facial profile and returns a verification value for the
system. We opted to use a third party facial recognition verification application to facilitate
our overall feature.

Architecture Style and Design Patterns
When this feature is added to our conceptual architecture, the style remains Layered.

We modelled our feature to be able to seamlessly fit into our conceptual architecture so that
we would not have to create any entirely new subsystems. We maintained our layered
conceptual architecture style in order to insure that we can increase cohesion within
subsystems while decreasing coupling between our subsystems. It was valuable following the
layered design pattern to insure we were implanting our new feature in a way that was
compatible with the entire Google Chrome system.

Sequence Diagram
The sequence diagram below describes the use case of a User who wants to use Face

First to login to their Chrome account. When a user first opens Chrome, they will receive a
pop-up (as shown in Fig 1.) asking them for permission for Face First to use their webcam.
The user will click allow and the message will be transmitted to the UI. The UI will make a
function call to Browser to start Face First. Browser will call Memory to get the images (IDs)
of the users who have allowed this computer access to their Chrome account previously.
Memory will return the users. Browser will then enable the user’s webcam and take a picture
of the user. It will use this picture to perform facial analysis and compare the current user to
the user’s stored on the computer. In this use case, there is a match found for the user, so
Browser passes the matched user ID to memory to retrieve the user’s information. This
information is then returned to the UI so that the user can view all the information associated
with their Chrome account.

Figure 5. Sequence diagram for a user wanting to use Face First

Conclusion
After a significant amount of time spent brainstorming our new feature, we created a

new feature called Face First. We investigated 2 approaches that maintained the overall
functionality of Chrome and chose the approach that impacted Chrome in the most positive
way possible. Our feature was focused on several non functional requirements including
Security, Performance and Maintainability. We impacted 3 subsystems along with several
code directories within these subsystems. As a team, this project showed us the steps for
developing a new feature and the importance of collaboration as a group.

References

Uncovering Password Habits: Are Users' Password Security Habits Improving?
(Infographic). (2018, February 05). Retrieved from
https://digitalguardian.com/blog/uncovering-password-habits-are-users-password-security-ha
bits-improving-infographic

Johnson, T. (n.d.). Forgot your password? You have too many and stores are losing business
over it. Retrieved from https://www.kansascity.com/news/business/article156636084.html

https://digitalguardian.com/blog/uncovering-password-habits-are-users-password-security-habits-improving-infographic
https://digitalguardian.com/blog/uncovering-password-habits-are-users-password-security-habits-improving-infographic
https://www.kansascity.com/news/business/article156636084.html

